skip to main content


Search for: All records

Creators/Authors contains: "Murali, T. M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available April 1, 2025
  2. Edelstein-Keshet, Leah (Ed.)
    Adaptive modulation of the global cellular growth state of unicellular organisms is crucial for their survival in fluctuating nutrient environments. Because these organisms must be able to respond reliably to ever varying and unpredictable nutritional conditions, their nutrient signaling networks must have a certain inbuilt robustness. In eukaryotes, such as the budding yeast Saccharomyces cerevisiae, distinct nutrient signals are relayed by specific plasma membrane receptors to signal transduction pathways that are interconnected in complex information-processing networks, which have been well characterized. However, the complexity of the signaling network confounds the interpretation of the overall regulatory “logic” of the control system. Here, we propose a literature-curated molecular mechanism of the integrated nutrient signaling network in budding yeast, focusing on early temporal responses to carbon and nitrogen signaling. We build a computational model of this network to reconcile literature-curated quantitative experimental data with our proposed molecular mechanism. We evaluate the robustness of our estimates of the model’s kinetic parameter values. We test the model by comparing predictions made in mutant strains with qualitative experimental observations made in the same strains. Finally, we use the model to predict nutrient-responsive transcription factor activities in a number of mutant strains undergoing complex nutrient shifts. 
    more » « less
  3. Lenore, Cowen (Ed.)
    Abstract Motivation Nearly 40% of the genes in sequenced genomes have no experimentally or computationally derived functional annotations. To fill this gap, we seek to develop methods for network-based gene function prediction that can integrate heterogeneous data for multiple species with experimentally based functional annotations and systematically transfer them to newly sequenced organisms on a genome-wide scale. However, the large sizes of such networks pose a challenge for the scalability of current methods. Results We develop a label propagation algorithm called FastSinkSource. By formally bounding its rate of progress, we decrease the running time by a factor of 100 without sacrificing accuracy. We systematically evaluate many approaches to construct multi-species bacterial networks and apply FastSinkSource and other state-of-the-art methods to these networks. We find that the most accurate and efficient approach is to pre-compute annotation scores for species with experimental annotations, and then to transfer them to other organisms. In this manner, FastSinkSource runs in under 3 min for 200 bacterial species. Availability and implementation An implementation of our framework and all data used in this research are available at https://github.com/Murali-group/multi-species-GOA-prediction. Supplementary information Supplementary data are available at Bioinformatics online. 
    more » « less
  4. null (Ed.)
    Viruses such as the novel coronavirus, SARS-CoV-2, that is wreaking havoc on the world, depend on interactions of its own proteins with those of the human host cells. Relatively small changes in sequence such as between SARS-CoV and SARS-CoV-2 can dramatically change clinical phenotypes of the virus, including transmission rates and severity of the disease. On the other hand, highly dissimilar virus families such as Coronaviridae, Ebola, and HIV have overlap in functions. In this work we aim to analyze the role of protein sequence in the binding of SARS-CoV-2 virus proteins towards human proteins and compare it to that of the above other viruses. We build supervised machine learning models, using Generalized Additive Models to predict interactions based on sequence features and find that our models perform well with an AUC-PR of 0.65 in a class-skew of 1:10. Analysis of the novel predictions using an independent dataset showed statistically significant enrichment. We further map the importance of specific amino-acid sequence features in predicting binding and summarize what combinations of sequences from the virus and the host is correlated with an interaction. By analyzing the sequence-based embeddings of the interactomes from different viruses and clustering them together we find some functionally similar proteins from different viruses. For example, vif protein from HIV-1, vp24 from Ebola and orf3b from SARS-CoV all function as interferon antagonists. Furthermore, we can differentiate the functions of similar viruses, for example orf3a’s interactions are more diverged than orf7b interactions when comparing SARS-CoV and SARS-CoV-2. 
    more » « less
  5. Abstract Motivation

    High-quality curation of the proteins and interactions in signaling pathways is slow and painstaking. As a result, many experimentally detected interactions are not annotated to any pathways. A natural question that arises is whether or not it is possible to automatically leverage existing pathway annotations to identify new interactions for inclusion in a given pathway.

    Results

    We present RegLinker, an algorithm that achieves this purpose by computing multiple short paths from pathway receptors to transcription factors within a background interaction network. The key idea underlying RegLinker is the use of regular language constraints to control the number of non-pathway interactions that are present in the computed paths. We systematically evaluate RegLinker and five alternative approaches against a comprehensive set of 15 signaling pathways and demonstrate that RegLinker recovers withheld pathway proteins and interactions with the best precision and recall. We used RegLinker to propose new extensions to the pathways. We discuss the literature that supports the inclusion of these proteins in the pathways. These results show the broad potential of automated analysis to attenuate difficulties of traditional manual inquiry.

    Availability and implementation

    https://github.com/Murali-group/RegLinker.

    Supplementary information

    Supplementary data are available at Bioinformatics online.

     
    more » « less
  6. Abstract

    Liver homeostasis requires the presence of both parenchymal and non-parenchymal cells (NPCs). However, systems biology studies of the liver have primarily focused on hepatocytes. Using an organotypic three-dimensional (3D) hepatic culture, we report the first transcriptomic study of liver sinusoidal endothelial cells (LSECs) and Kupffer cells (KCs) cultured with hepatocytes. Through computational pathway and interaction network analyses, we demonstrate that hepatocytes, LSECs and KCs have distinct expression profiles and functional characteristics. Our results show that LSECs in the presence of KCs exhibit decreased expression of focal adhesion kinase (FAK) signaling, a pathway linked to LSEC dedifferentiation. We report the novel result that peroxisome proliferator-activated receptor alpha (PPARα) is transcribed in LSECs. The expression of downstream processes corroborates active PPARα signaling in LSECs. We uncover transcriptional evidence in LSECs for a feedback mechanism between PPARα and farnesoid X-activated receptor (FXR) that maintains bile acid homeostasis; previously, this feedback was known occur only in HepG2 cells. We demonstrate that KCs in 3D liver models display expression patterns consistent with an anti-inflammatory phenotype when compared to monocultures. These results highlight the distinct roles of LSECs and KCs in maintaining liver function and emphasize the need for additional mechanistic studies of NPCs in addition to hepatocytes in liver-mimetic microenvironments.

     
    more » « less